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Large Deviations for the 2D Ising Model: 
A Lower Bound without Cluster Expansions 
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We show that a lower large-deviation bound for the block-spin magnetization 
in the 2D Ising model can be pushed all the way forward toward its correct 
"Wulff" value for all ,6' > fl,. 
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1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF RESULTS 

The classical large-devia t ion theory for the 2D neares t -ne ighbor  Ising 
model  is well knowntg): Let A ( L ) c  Z 2 be a square box of the volume L 2 
and let P J- denote  the Gibbs  measure  on A with plus bounda ry  condi t ions,  
that  is, the Hami l ton ian  H ~  of a spin configurat ion a on { - 1 ,  1} "~ is 
given by 

-H~(~)=�89 E ,,x,,..+ E 
<x v) <x v) 

x ,  .1' e ,4 x E A ,  .|, E A c 

o. x 

where the summat ion  is over all nearest  neighbors  x and y. The probabi l i ty  
d is t r ibut ion  of a t  { - 1 ,  1 }A is defined, then, via 

_ 1+ e_lm~r p~(o)- ~-~- . 
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where Z ]  is the corresponding partition function. Define the block-spin 
magnetization XA on A as 

1 
XA - IA[  .~".7, a... 

where tr,. = + 1 is the value of the spin at the site x e A. Set 

p( t )=  l im e -  ~_ log E~ exp(t IAI XA) 

and let (~(m)=sup,{tm-p(t)} be the Legendre-Fenchei transform of p. 
Then the P~- probability that XA is around some m e R  ~ decays as 
e-lAl~'"~; more precisely, for any closed interval [a, b ] c  R ~, 

lim - i j logP-~{XAe[a,b]}=--  rain ~b(m) (1.1) 
m e [ a , b ]  

Note that ~b is a convex function. If the infinite-volume Gibbs measure for 
the corresponding lsing model is unique, that is, if the inverse temperature 
/~ is less than the phase transition threshold/~,., then ~b is in addition strictly 
convex and the classical estimate (1.1) is always nontrivial. On the con- 
trary, if fl > tic, then ~b has a flat portion on the interval [ - m * ,  m*], where 
m*=  m*(fl)> 0 denotes the spontaneous magnetization. Consequently, in 
this case (1.1) does not provide us with too much of the information about 
m - s  inside [ - m * , m * ] .  An explanation of this phenomenon can be 
found, for example, in ref. 9: any me  [ - m * , m * ]  corresponds to some 
infinite-volume Gibbs measure, which has zero specific relative entropy 
with respect to the infinite-volume plus state P+, P+ =lira P~-. Thus the 
exponential decay of probabilities in this region has to be at most of the 
surface order rather than of the volume one. In other words, in order to get 
more interesting results in our case one has to study 

! 
~log  P-~(XAe [a, b]} (1.2) 

whenever [a, b] c~ [ - m * ,  m*] 4: ~ .  The investigation in this direction 
was, to our knowledge, initiated in ref. 14, where nontrivial two-sided 
bounds on (1.2) were obtained, without, however, specifying precise values 
and meaning of the corresponding constants. The really remarkable 
breakthrough came with the (much more extensive in scope) work of ref. 6. 
The specific problem of large deviations was initially addressed in the 
announcement in ref. 15, and, to a certain extent, independently completely 
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solved in another very interesting paper. ~2~ The results of ref. 12 assert that 
(1.2) tends to a limit as L ~  oo and, moreover, this limit is given by a 
certain expression involving the minimum of the Wulff functional for the 
surface tension of the model. Let us introduce some notations to make this 
precise; we will be rather laconic in doing so, and all missing details can 
be found either in ref. 6 or in ref. 12; in fact this paper was written in the 
course of attempts to understand their results better. 

(a) The surface tension. We use the same notation for a unit vector 
n, n e S 1, and for the corresponding angle 0-= n, 

n = (cos 0, sin 0) 

The surface tension F =  F(n) is a function defined on S ~ which measures 
the free energy of the -I--interface in the direction orthogonal to n. See refs. 
1 and 12 for precise definition and relevant properties. The fact important 
for us here is that for the 2D Ising model F equals the mass gap of the dual 
model in the same direction. The dual model is defined on the dual lattice 
Z 2 * =  Z 2 +  (1/2, 1/2) and its inverse temperature/~* is related to fl via the 
Krammer-Wannier  relation 

tanh/~* = e-2tJ 

We refer to ref. 12 for a comprehensive discussion of duality. Let ( - ) . r  be 
the correlation function of the infinite-volume dual state (which is unique, 
since / ~ > / / c ~ / ~ *  </~c and let {uk} be a sequence of dual vertices, 
lu, i --, oo, such that 

lim uk 

Then, H2) 

- l im 1 ) f = F ( n )  
* ~ ~ lu~---T log(aoa,,~ 

In particular, this means that F satisfies F(n) = F ( - n )  = F(n + rt/2) and 
that the affine extension of F to R 2 is convex or, equivalently, F is a 
support function of a certain convex body WF c R 2, 

w,-=  {xl sup(n ,  x ) -  F(n) ~< O} 
n e S  I 

where ( . ,  - )  is the scalar product in R 2. 

(b) The Wulff shape. The convex body defined above is called the 
Wulff shape. Its boundary ~'F=&WF solves the following variational 
problem: 
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Let d be the class of all closed rectifiable curves in R 2 without 
self-intersections. For V ~ ~r define the Wulff functional as 

~r ) = ;~ F(ns) ds 

where ns is the unit normal to ~, at s. Then, 

def 
2WF = min ~r = "/r 

vol('~' ) =  vo l (~ 'F)  

is invariant under parallel translations. Moreover, it has a nice 
expression for dilatations, namely 

"IUF(a)') = a # r ( ~ )  (1.3) 

AS an immediate consequence of (1.3) we obtain that a)'F solves the 
dilatated variational problem: 

~[/'F(a~F ) = 2aw F = min "/UF(~) 
-}, • .~,f 

vo l ( ) '  ) = a 2 vo l ( ) ' F )  

To get a still better understanding of the quantity wr, note that by the 
results of ref. 1, F is smooth. By the convex duality this means (~31 that Wr 
is strictly convex. Therefore, the parametrization n ~ v~(n) is well defined. 
An easy computation reveals that 

"/U~'(~r) = Jsf' F(n)(F + F")(n) dn 

and 

VOI(~F) = �89 fs' F(n)(F + F")(n) dn 

Thus, We is nothing but the volume of the (unnormalized) Wulff droplet. 
We are now in a position to state a (somewhat weak) version of the 

large-deviation results of refs. 6 and 12: 

T h e o r e m  1.1. Let m be sufficiently close to m* and fl large 
enough. Then 

log P~- {X,~ ~< m} = -2 [w~-~(m) ]  1/2 (1.4) 
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where 

m* - m  
~(m) = - -  

2m* 

The original estimates of ref. 6 or ref. 12 are more subtle than just a 
rough logarithmic convergence claimed above. However, our main concern 
here are the conditions under which the theorem was proved. The restric- 
tion on m has to do with the fact that if ( m * - m )  is small, then a Wulff 
droplet of the volume ~t(m) can be placed inside a unit square, otherwise 
the influence of the walls of A has to be taken into the consideration and 
the answer will be more cumbersome than the one on the right-hand side 
of (1.4). Contrary to this, the condition on fl to be large is indispensable 
both for ref. 6 and ref. 12, since low-temperature cluster expansions are 
substantially employed. On the other hand, it is generally believed that at 
least for the 2D Ising model the results should remain true for all fl > fl~; 
in particular, large-deviation estimates (1.4) should not depend on a 
technical possibility to use cluster expansions. 

In this paper we undertake a rather modest step in the direction of 
justifying this belief, namely we give a proof of a lower large-deviation 
bound with the correct "Wulff" rate without using cluster expansions. The 
proof relies on a certain analytical property of the surface tension, which 
holds true for all fl > fl,.. To be more specific, our core condition is that of 
the positive stiffness of F, i.e., 

inf (F+ F")>~o~>O (1.5) 
n ~ S  I 

Geometrically the assumption above means that the corresponding Wulff 
shape has the curvature bounded above. In the particular case of the 2D 
Ising model (1.5) can be obtained from the exact solution, tl'31 The explicit 
formula for F" + F may be found in ref. 2. 

Our main result is the following: 

T h e o r e m  1.2. Let me(-rn*,rn*) be close enough to rn* and 
fl > fl,.. Then there exists a sequence of numbers { R ,  } such that RA ~ m as 
L tends to infinity, and 

lim inf 1 t . . . .  L log P J  {XA = R ,  } >/ -2[w~-ct(m)] ,/2 (1.6) 

The construction behind the proof is very similar to the one employed in 
ref. 12. We consider a Wulff droplet of the relative volume ct(m) inside A 
and surround its boundary by a "sausage" of intermediate boxes [that is, 
of the size L" for some v e (0, 1 )]. Then the fluctuations of the +-interface 
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inside this sausage will not result in any substantial volume gain, but will 
be enough to push the estimate to its correct "Wulff" value asserted in the 
right-hand side of (1.6). 

We follow ref, 12 to make an extensive use of duality relations for the 
2D Ising model and inherit some of the notations from this paper. Thus A* 
is set to denote the box on Z 2. which is dual to A, <- >f .  is the correlation 
function for the Gibbs measure with free boundary conditions for the dual 
model on A*, and, for any subset M of the dual lattice, ZM is the corre- 
sponding partition function with free boundary conditions on M. Unlike 
ref. 12, however, our contours and paths are simple geometric objects 
(closed curves without self-intersections and self-avoiding curves, respec- 
tively) composed of dual bonds and rounded corners via the splitting rule 
introduced in ref. 6, Chapter 3, and also mentioned in the Section 10 of 
ref. 12. We say that a path y leads from u to v, ~: u --* v, if u and v are the 
two endpoints of ),. The following formula will be important in Section 4 
(see ref. 12 for details): 

(a,,a,,>~.= ~ e -2t~h'l ZA'\'~ (!.7) 
)': I1 ~ l: Z A  * 

i n s i d e  A * 

The symbol a will be used to denote the value of spins both on direct and 
dual lattices, but we hope this will cause no confusion. Finally, we use 
various correlation inequalities; all relevant details may be found, for 
example, in a survey article, c~61 

The central idea of the proof is to use the positive stiffness assumption 
(1.5) to show that the precision with which one can approximate <a,,a,,>~. 
by e x p [ - d ( u ,  v)F(n,t,)] [where d(u, v) is the distance between u and v, 
and n,,, is the unit vector in the direction of the line uv] happens to be 
enough to conclude that the overhelming contribution to the right-hand 
side of (1.7) comes from ~, inside a certain intermediate box containing u 
and v. 

In Section 2 we use (1.5) to deduce a sort of uniformly sharp triangle 
inequality, which is shown to be still true for finite-volume correlations 
<. >~. in Section 3. Section 4 is devoted to the necessary computations in 
an intermediate box. The proof of Theorem 1.2 is concluded in Section 5. 
Finally, in Section 6 we briefly discuss some related results about moderate 
deviations from m*. 

2. SHARP TRIANGLE INEQUALITY 

In this section we show that if the surface tension F =  F(n) is a smooth 
function on S t and, moreover, the condition (1.5) of positive stiffness 
holds, then F satisfies a strong form of the triangle inequality. 



Large Deviations for 2D Ising Model 417 

Lemma 2.1. Let F be smooth and assume that 

inf ( F +  F")>~ c~>0 
n ~ S  1 

Then for any triangle 

a n  a = bn b + cn,. 

where no, nb, n,. are unit vectors in R 2 and a, b, c>~0, the following 
inequality holds: 

bF(nb)+cF(n,)-aF(n~)>~ka(b [nh-n~[2+c [n,.-n,[ 2) (2.1) 

with k > 0 being some universal constant. 

Proof. Let us elaborate first on some notions from the convex 
geometry. The Wulff shape W r is a convex closed subset of R 2. Its support 
function �9 is given by 

qS(x) = s u p ( y , x ) = l x l F ( - ~ x l )  
y ~: W F 

The differentiability of F implies, therefore, the differentiability of q~ in 
R2\O and, as mentioned in the Introduction, this means by duality that the 
boundary 7 r =  OW r is strictly convex. Thus the parametrization n ~ 7F(n) 
is well defined. Moreover, let n • denote the unit vector which is counter- 
clockwise orthogonal to n, i.e., 

d 
(cos 0, sin 0)" = ( - s i n  0, cos 0)=~-~ (cos 0, sin 0) 

Then it is easy to see that 

V ~ ( x ) = ~ - ~ r  + [x[ r '  x 

Thus for any two dual points n and 7r(n) the following relations hold: 

y F ( r t  ) = nF(n ) + nl  F'(n ) 

and 
F(rt) = (n, ~F(rt)) = sup (n, ~F(m)) 

r u E S  I 

Back to the assumptions of the iemma, we see that 

aF(n~) = a ( n~, V F(n~) ) = b ( nb, 7r(n,,) > + C ( G-, 7F(n~) ) 

(2.2) 
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bF(nb) + cF(n,.) - aF(n,) 

= b < n  h, 7F(r /h)  - -  ~ g ( n , j  > "k- C< rt,., ) ' r ( r / , . )  - -  "YF(na) > 

Therefore it remains to verify the following bound: 
Set G ( m ) =  (n, 7r(rt)--],r(m)>. Then, 

G(m) >~k In-m[  z (2.3) 

It suffices to check (2.3) for m close to n, otherwise the bound is trivial. 
But, 

ac ( ,,..\ 
dn---~= - n, dm / 

On the other hand, by (2.2), 

d3---r=(F+ F")m• 
dm 

Consequently, for m close to n, 

dG 
- -  = - - ( F  + F " ) < n ,  rn • > >1 kc~ In - ml 
dm 

and the claim of the lemma follows. 

3. INEQUALITIES FOR CORRELATIONS 

In order to derive appropriate relations for finite-volume correlations 
based on the inequality from the previous section we need some additional 
facts, namely we need to control the approximation of exp[-d(u,  v)F(n,,,.)] 
by <a,av> f .  and we have to take care of the situation when n,,~nh~n,. .  
The latter task can be readily accomplished by using monotonicity 
properties of the infinite-volume correlation function <.>./~116) The main 
statement of this section asserts that if u, v, and z are integer vertices of 
some admissible triangle of the size L" [with v ~ (0, 1)] which lies deep 
inside the box A*=A*(L) ,  then for some 6 > 0  

(a,,av>.~. >~ <a,,a.>~~ <a:a, ,>~. e ~'L" (3.1) 

as L becomes large. 
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To be more  precise, let us say that  a triangle T with sides a, b, and c 
is f-admissible if: 

(i) 6<~min{a,b,c}<~max{a,b,c}<~3. 

(ii) a<~b. 

(iii) 0 ~ int(T). 

Let us fix some scale parameter  rE (0 ,  1) and a displacement radius r, 
r < 1. Then 3a = 3,~(L) is defined to be a set of all ordered triples (u, v, z) 
Z 2. x Z 2. • Z- '*  of integer vertices such that the corresponding triangle T 
can be scaled into a 6-admissible one, i.e., there exists x ~  B~(0) (the ball of 
radius r a round the origin) such that 

1 
2L" ( T - L x )  

is &-admissible, given the side uv is scaled into a and vz into b. 

T h e o r e m  3 . 1 .  
stiffness. Then V& > 0 

Assume that  F satisfies condit ion (1.5) of positive 

( a , , a : ) ~ .  (a:a,,)~.<~ - c < 0  (3.2) 
1 1 
- lim sup max ~-s log 

where c=c(r,  v). 

Note that once & is fixed, (3.1) is just a reformulat ion of the above 
claim. 

The proof  of this theorem is splitted into several lemmas. Let us start 
by showing that once T =  T(u, v, z) is far away from the boundary  &A*, one 
can get rid of the subindex A* in (3.2) without changing the conclusion. 

L e m m a  3.1.  Let t and s belong to some R e  3~. Then, 

(~r,~,)~. ~ (~,~r.,} r~< (~r,o,)~.[1 + o(1 )] 

uniformly in all such T. In other words, 

(~r,a.,) r 
lim sup sup (a ,a , . )~ .=  ! 

L - -  rs T e  3,~ I . s ~  T 

(3.3) 

ProoL It is clear that for all t and s which belong to the same T~  3~, 

(a,a,.StA.>~e -''u' 
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for some positive c > 0 .  A convenient way to figure out the difference 
between ( a , a s )  ~. and (a , t r s )  j is to use an FK representation (see ref. 4 
for .a complete list of relevant definitions and details). Namely, given a box 
A*, define a joint probability distribution of a spin configuration 
a e { -  1, 1} "~" and a bond configuration n e {0, 1 } B~A'I, where B(A*)  is the 
set of all dual bonds with both ends in A*, by first assigning independent 
probabilities 1/2 to each spin tr,. = 1 and p to each (open) bond n(b )=  1 
and then conditioning the resulting distribution by the event "An), two 
neighboring sites x and y with different spins are connected by a closed bond, 
i.e., i f  a.~a.,,= - 1 ,  then n ( ( x ,  y ) ) = 0 . "  The site marginal of the resulting 
joint distribution is, then, the lsing model on A* with free boundary condi- 
tions and f l = - l o g ( 1 - p ) ,  whereas the bond marginal is the so-called 
dependent percolation model or FK measure with free boundary conditions 
on A*. Let us denote the latter (bond) measure as "~A" Let also ~ be an 
infinite-volume FK measure. Then ~ dominates ~4 in the F K G  sense. 
Recall also that 

and 

(<r,~r~.)s=.~(t ,-, s) 

< ~,,L. )~.  =,~,,(t +-. s) 

where the event "t ~ s" means that the vertices t and s can be connected 
by a chain of open bonds. Set now A = { t ,--, OA* or s ,--* 0A* }. Then by the 
FKG inequality 

:~A(t *--* s; A") >t ~ ( t  ,--, s; A") 

Therefore, 

( a , t r , .> / -  (tr,a~.>fA, = ~ ( t  *--* s ) - ~ A ( t  *--* s ) 

<~ ~ ( t  ,-, s)-~@a(t ,--, s; A") <~ ~ ( t  ,--, s ) - ~ ( t  ,--, s; A '  ) 

= . ~ ( t , - - , s ; A ) ~ ( / | ) - . . <  y '  [~(t,--,z)+~'(s,-,z)] 
: e O A *  

~<2 10Z*l max max{ ( tr , t r : )  f, (tr.,.o'.) r} 
2 E O A  ~ 

But, 

(a,,a,,).C<. e x p [ - d ( u ,  v) inf F(n)] 
n e S  I 
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Therefore, since min{d(t,  z), d(s, z)} >/(1 - r ) L ,  we have 

(o ,~s)  I -  (<r,~)~.  = o ( (o ,~ , )  ~.) 

uniformly in T ~ 3 ~  and hence (3.3) holds. 

L e m r n a  3.2.  We have that 

(aoa,-)J>~ exp{ - @(x)el + o(1)]  } 

uniformly in Ixl --' oo. 

Proof. Choose an odd map x---, [ x ]  from R 2 into Z 2 in such a 
fashion that l-x] is a vertex of a unit plaquette containing x and I-x] = 0 
for all x in some fixed small ball a round the origin. Set 

1 
f , (x )  = - -  log(aoae~, q ) s  

r /  

Then for each x fixed, 

lim f , , (x)= @(x)=  txl f (3.4) 
n ~  

The assertion is that the above convergence is in fact uniform on B~(0). 
Note  first that one can find a constant  c such that 

I f , , ( x ) -  f,,(y)l <~f,,(x- y) + c/n (3.5) 

Indeed, IEnx] - [ n y ] -  [ n ( x - y ) ] l  ~< 3. Consequently, 

(aoat,.q).r>>. e-,.(aoat,,.,. 1 )y (ao~r t,~ x -.,,)1 ) s  

with e -"=  min m =3(ffoa,)Y~ The same remains true if the roles of x and y 
are interchanged. Furthermore,  let us show that for each e > 0 there exists 
a constant k = k(e) such that 

f,,(x)<~k Ixl +E (3.6) 

for n large enough. In order to do this, just observe that 

lr m 1+ 1 
f,,+,,(x) <. ~ .  f~(x) + ~ f , , ( x )  + c 

lr l r  --P m l r  --p m + m 
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Fix r large enough to ensure that c/r < e/2. Since f ,  = 0 on a small ball 
around the origin, 

L ( x )  _ k 
sup - - -  < 

B, Ixl 2 

Thus for l large (3.6) will be satisfied. 
Assume now that the conclusion of the lemma is wrong and one can 

find a sequence {x,}, x,,eB~ such that 

f,,(x,,) > , / , (x . )  + 

Set x = lim . . . . .  x,, (going to a subsequence if necessary). But, according to 
(3.5) and (3.6), 

f , , ( x )  >~ f , , ( x , , )  - k I x  - x ~  - ~ /2  - c / n  

for some large (but fixed) constant k and all large enough n. Therefore, 
since ~b is a continuous function, we obtain that 

lim inf f,,(x) >/@(x) + e/2 

which contradicts (3.4). 
We are now in a position to prove Theorem3.1. Let (u, v,z)e3,~.  

By symmetry it is enough to consider the case when the angle 0 between 
the line vu and the horizontal axis is between zero and rt/4. Let l, and 12 
denote two rays emanating from u under the angles n/2 and - n / 4 ,  respec- 
tively (see Fig. l) and let A be the smallest of the two sectors cut out by 
those two rays. If zEA,  then by monotonicity properties of (.}t~,,6~ 
(a,,a=)r<~ (a~,a,,)( Consequently, 

( a , , a - )  r ( a : a , , )  .r 
~< ( o = a . )  j ( a , , a , , )  .r 

But d(z, u) >i 26L ~ by the definition of ~3~. Thus, in view of Lemma 2, 
(3.1) holds with c=2inf,,~s~ F(n). 

The same argument remains true for all reflections of A with respect 
to all lattice symmetry axes passing through v. In fact, a similar reasoning 
shows that if the conclusion of the theorem is to be violated, it will also be 
violated for some z such that the angle L zvu is sharp. But all such z which 
in addition do not belong to any of the reflections of the set A mentioned 
above satisfy the following bound: 

In,.=- n,,u] >~k>0  
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where k is a fixed independent constant. Therefore, by the sharp triangle 
inequality of the previous section, 

d(v, z) F(nw) + d(z, v) F(n__v) - d(u, v) F(n,,o) >>- k f L  v 

It remains to use Lemma 3.2 to justify the shift from F to ( - ) I  and the 
theorem is completely proved. 

4. C O M P U T A T I O N S  IN AN I N T E R M E D I A T E  BOX 

Let us say that two dual vertices u and v form a skeleton pair if: 

(i) L"<~d(u, v)~<2L". 

(ii) Both u and v are deep inside A*, i.e., d({u, v}, 0 A * ) > ~ ( I - r ) L  
for some fixed r ~ (0, 1). 

An intermediate box passing through u and v is by the definition an 
R2-quadrangle T, T c  A*, which possesses the following properties: 

(i) u and v lie on the opposite "vertical" sides of T. 

(ii) The angles between those two sides and the line uv do not differ 
too much from ~/2, say they belong to ( n / 2 -  s, ~/2 + s) with some small 

to be specified later. 

(iii) The distance from either u or v to any point on one of the two 
remaining "horizontal" sides is sandwiched between 2L'  and 3L". 

Given an intermediate box T, we are going to estimate the quantity 

Z e - :P l r l (X+)+  (4.1) 
),: u ~  u 
i n s i d e  T 

822/74 / I -2 -28  
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where ;(;,+ is the indicator function of the event that all the spins at sites 
adjacent to Y are up. Similarly, let X~7 to denote the event that all the spins 
at sites which harbor an edge intersected by 3' are down. The following 
simple observation will be useful later. 

L e m m a  4.1. We have 

Proof. 
considered, 

7 . . . ,  

Z A ,  

The first inequality is obvious. As far as the second one is 

/ a *  

where the equality follows by duality considerations II=l and the inequality 
is implied by the first GKS inequality. ~ls~ 

Our main import of the lemma above is the possibility to compare 
ZA.\~ for different y. 

The main result of this section yields the following bound on the 
sum (4.1): 

T h e o r e m  4.1 .  There exist two positive constants c, k > 0, such that 
u  

~. e-21sl;'t(X;+, ) ~ >~ce kaL' (a .a , , ) f .  (4.2) 
y: u ~  t, 
ins ide  T 

simultaneously for all skeleton pairs u and v and all intermediate boxes T 
passing through {u, v}, provided only that L is large enough. 

Given a skeleton pair {u, v}, let F~,, be a fixed shortest path of dual 
bounds connecting u and v. Pick a vertex z on F,,v with 

6L"~d(u,  z)-.< 6L" + 1 

and a vertex w on F.~, with 

6L" <. d(w, v) <~ 6L" + 1 

L e m m a  4.2. There exist positive constants c and k such that 

e-2l~l~'l Za*M'>~ce-k'~L" Z e-Zl~l~'b ZA*\~' 
�9 ,,: u ~ r ZA* ",,: : ~ w ZA* 
ins ide  T ins ide  T 
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ProoL Let 7 be a path,  7: z --+ w inside T. We split y into three pieces, 
Y = Y.-, to 7,.,-to 7.~,., where t and s are closest to u and v, respectively, points 
of intersection of 7 and F,,, (see Fig. 2). 

Set F , ,  and F,.~ to be the par ts  of F,,, leading from u to t and from s 
to v, respectively. Note  that  3',s does not  intersect F,, and F,.,, in any points  
other  than t and s. In a view of (1.7) we obta in  

E e-2#h'l ZA*\)'= E E *  e-2fl(h':H+l;'td+lY''l)ZA*\Y:'~r'~v~ 
"~,: z ~.,  ZA* t ~ F~: ZA" 
i n s i d e  T .,,- �9 F .  x 

t E Fu: 

s ~ F.,v 

<a:a,>~. <a,.a,.> f .  ~* e -2#H ZA'\~' 
" Z A  * 

<~ ~ Z*e -2#h'IZA~ 
t~r.: ZA" 
s E Fwt, 

where, as in ref. 12, Z *  means the summat ion  over all admissible y, that  is, 
over all spli t t ings of 7: z ~ w inside T in the first line, and over all 7,~ which 
satisfy 

7,s~ (C,,w F~,,wOT)= {t, s} (4.3) 

in the second and third lines. 



426 Ioffe 

The set of all y which satisfy condition (4.3) for some t~F,= and 
s ~ F,+ can be injected into the set of all paths leading from u to v inside 
T via the following relation: 

Let us denote the corresponding injection by G. By Lemma 4.1, 

f e  a + e-a,~ -2 Ia(~')\~'l ZA'\r ~< 2 Za'\alr) 
Z A  . k ' '~ ' f l /  Z A  . 

Putting all this together, we finally obtain 

e -2a t~l Za'\r<~46L,. (ea§ 2*L" ,,: ZA. \ e--Y "} E e-2al'lZA'\r 
z ~ w y :  u ~ v Z A *  

i n s i d e  T i n s i d e  T 

which concludes the proof of the lemma. 

Lemma 4.3. Let z, w, and T be as in Lemma 4.2. Then, 

e-2al~'l ZA'\r = 7  (a=a,,,)~. [1 - o ( 1 ) ]  
y :  ~ ~ ~t, / - ~ h  * 
i n s i d e  T 

Proof. Let y, Y: z-~ w, be a path which exits from T and let us split 
7 into two peaces, y =y: ,wT, : ,  where t, t~c3T, is the point where y hits aT 
for the first time. Then, max{d(z, t), d(t, w)} > d(z, w) by the definition of 
an intermediate box, provided only that e is sufficiently small. Le t  us 
assume without loss of generality that d(t, w)>d(z, w). Note that in the 
notations of the previous section (z, w, t)~ ~6/2- Therefore, by Theorem 3.1 
there exists a constant c > 0 such that 

(a :a , )z , .  ( ,~,a,,)~..< - '+"  e (o-= o',.) f .  

for L large enough. Consequently, 

E e-2~'~"ZA'\'~'<~ ~. E *e-2~'L~:''+'~''''ZA*\'~:''~r"'' 
~: z Z A *  Z A  * ~ w  tEOT 

) ' u O T ~ O  

- ~ " r ~  ~ ~+ =o(l)(~r:~r,,,)~. ~<2 IOTI e ,,v-:,, ,/A. 

which is precisely what we need. 
The estimate on (4.1) asserted in Theorem 4.1 follows now by a direct 

successive application of Lemmas 4.1-4.3. 
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5. P R O O F  OF THE L O W E R  B O U N D  

Let F,,,. L be the boundary of the Wulff droplet of the volume e ( m )  L'- 
centered inside the box A = A(L) .  We start by giving a precise description 
of how we construct intermediate boxes around F,,,L. Given a scale 
parameter r e ( 0 ,  1), let us go counterclockwise around F,,.L and pick 
a set of points x~,x,_, . . . ,xu~L) such that each x~ lies on F,,. L and 
L"<~ d(x~,  x i§  j) <~ 2L ~' for all i. With each i we associate a neighboring dual 
vertex ui, d(x i ,  ui)<  1. Thus, in the language of the previous section, 
(u~, u~+t) is a skeleton pair for each i =  1 ..... N ( L )  [with the convention 
N ( L )  + 1 = 1 ]. It remains only to draw "vertical" sides of the correspond- 
ing intermediate boxes. The self-suggesting idea is to make a vertical side 
through u~ to be parallel to the direction of the normal to F,,,L at xi.  It is 
not hard to see that if n~ denotes the unit vector in the direction of the 
corresponding normal, then 

max I n i - n i +  jf ~ O ( L  " -  I ) (5.1) 
i 

Indeed, since F,,,.L can be parametrized by n and in a view of the remarks 
made in Section 2, 

d s = ( ~ ( m ) ~ ' / ' - L ( F +  F , , ) d  n 
\ W F /  

where ds is the element of the length along F,,.L. Therefore, using the 
positive stiffness of F, we conclude that 

dn 
--~s <<. c L - ' 

and (5.1) follows by the integration on intervals of order L". 
Note that the above construction implies that the number e which 

appears in the definition of an intermediate box can be chosen as small as 
we wish, provided that L is sufficiently large. 

So let T,,..., TNtLI be intermediate boxes constructed above and set 

It is clear that 

and 

N(L) 

T =  U T~ 
I 

N ( L )  <~ cLI -"  (5.2) 

ITI <-% cL ~ + " (5.3) 
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Furthermore,  let PL denote the polygon through u~ ..... uN. Then, 

! 
"g~:(PL) ~ 2 [wr0~(m)] ,/2 (5.4) 

as L tends to infinity. 
Set now EL to be the event 

EL = {there is a +_-contour through u~ ..... u^, inside T} 

where a contour  7 is called a +-contour  if all the spins at the sites adjacent 
to y from the outside are pluses and all the spins at the sites adjacent to 
), from the inside are minuses. 

The proof  of Theorem 1.2 comprises the following two lemmas: 

L e m m a  5.1.  For  all s > 0 there exists L = L(e) such that VL >~ L(e), 

P~{IXm-ml <e/EL} >1 1/2 

Lemma 5.2. We have 

1 
lim in f ' -  log PA {EL } >~ --2[WF~(m)] 1/2 
L -- ~- L 

Assume for a moment  that both lemmas above are true. Pick a 
sequence e,,, e,,---,0, and set L, ,= L(e,,) as described in the statement of 
Lemma 5.1. Then for each L ~  [L,,, L ,+ ~) there exists an RA, 

R ~ e ( m - - e , , , m + E , )  

which in addition satisfies 

1 
P~ {XA = RA/EL} >/4e,, IAI 

Therefore, 

lim inf 1--  log P+ {XA = RA } ~> --[2wt..~(m)] tn 
L - ~ .  ILl 

and we are home. 

Proof  of  l_emma 5. I. Let ), be a 4--contour inside T. With a slight 
abuse of notations we continue to refer to the corresponding event as y and 
write 7 e EL. Then, 

P J  {I XA -- m I >/e/EL } ~< sup P~- {1XA -- m I >1 e/7 } 
"/E E L 
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Next observe that each y ~ EL splits A into two disjoint components: the 
outer component A, and the inner component A2. Because of (5.3), 

{ { } P~{IXA-mI>~/T} ~ P+A, IXA,-m*I >>'~ +PA+~ IXA,--m*I~-'~ 

for L large, where XAt and XA, are the block-spin magnetizations in A~ 
and A2, respectively. The assertion of the lemma reduces, thereby, to a 
rather rough statement that the law of large numbers is still valid in A ~ and 
A2 as if we are dealing with usual rectangles. We proceed with the proof 
solely in order to make the presentation here more self-contained. Let us 
tile A ~ with disjoint square boxes of the area at least L 2" each, /~ ~ (0, 1), 
trying to leave behind as little room as possible. Denote those boxes by 
MI ..... MklL). Obviously, k(L) <~ cL 2~1 -")  and 

' /(u ) L---5_ A, M i ---*0 

as L tends to infinity. Set XM, to be the block-spin magnetization in the 
box Mi. Then, 

{[Xa,-m*[>~3}~{3i: IXM,--m*I>/6} 

and hence 

P+~{IXa,-m*l>~3}~k(L)suPP.~,{[XM~-m*l>~6} 

However, the latter quantity is already under control and we can use the 
large-deviation results of ref. 5 to bound it above by cL 2(~ ~) e x p { - c ' U ' } .  
Therefore, 

as L tends to infinity. P~,{IX.~,-m*l ~>~/3} can be worked out along the 
same lines. 

Proof of LOroroa 5.2. With the results of Section 4 in hand, the proof 
of this lemma is almost identical to the proof of the corresponding 
statement in ref. 12. |ndeed, 

}, ~ E L 



430 Ioffe 

We restrict our attention to a subset of Et_ which consists of all y such that 
the piece of 7 connecting each skeleton pair (uj, u~+j) (and which we 
denote by ])i from n o w  o n )  lies entirely inside the corresponding 
intermediate box T i. Thus, 

But, 

),1: Ul ~ it2 },N: I/N ~ Ul 
inside T I inside T^, 

for each _+-contour 1'. Therefore, by the FKG inequality, 

e~ {EL} >~ e-=l ~ I;',I(Z+ )~- 
} Itt t~l + I 

inside T,  

Each of the multipliers above can be estimated via Theorem 4.1. Conse- 
quently we may conclude that V6 > 0, 

N I L )  

P~ {EL} >I (ce-kaL') 'v{L' l-I <r )tj. 
1 

N ( L )  

>~ce-k'aL I-I (0",O',,,+,)-~. (5.5) 
I 

as L becomes large. Furthermore, by Lemma 3.2, 

(a,,,a,,,+,)-~. >/exp{ -d(ui, Ui+l ) F(ni)[l + o(! )] } 

Thus we may rewrite (5.5) as 

P~ {EL } >/c exp(--k'aL) exp{ -~) .-(Pc)[  1 + o(! )-I } 

for any &>0 and L large. The result follows now from (5.4). 

6. MODERATE DEVIATIONS FROM m* 

The results of Sections 3 and 4 and the proof of the main theorem in 
Section 5 can be almost readily adjusted to derive lower bounds for the 
probabilities of moderate deviations from m*. Indeed, assume that the 
sequence of numbers {m(A)} satisfies 

lim L k (m*-m(A)'~ L~o~ \ ~ } = c > O  (6.1) 
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for some k e (0, 1). Let us try to estimate the probability of XA being close 
to m(A) on the scale L -k. One way to do so is to compute the probability 
of the occurrence of the Wulff droplet of the volume 

and then to prove that the existence of such a droplet implies the desirable 
event. The solution to the former problem follows directly from the estimates 
of Sections 3 and 4 and we obtain that the probability in question is bounded 
below by 

exp{ -2L'--k/2(C~'F)l/2 [-1 - o(1)] } (6.2) 

Note, however, that (6.2) cannot serve as a correct lower bound for all 
values of k. For example, in the limiting case k = 1 the resulting exponent 
is L 1/2, which is too large versus L ~ provided by the central limit theorem. 
In fact, as explained and proved for large values of fl in ref. 6, the threshold 
value of k is k, = 2/3. According to their results, below k, the main con- 
tribution to moderate deviations comes from the Wulff droplet of maximal 
volume, whereas above k, moderate deviations from m* are of the classical 
Gaussian nature as in the case of the independent random variables. We 
can now extend their lower bounds as follows: 

T h e o r e m  6.1. Let fl > fl,., k ~ [0, 2/3), and assume that a sequence 
{re(A)} satisfies (6.1). Then, there exists a sequence of numbers {R,~} such 
that 

lim Lk(RA-m(A))=O 

and 

lim inf L k/2- l log P~- {XA = RA } >-- --2(CWF) 1/2 
L ~ o 9  

The only part to be changed in the proof of Theorem 6.1 as compared 
to the corresponding proof of Theorem 1.2 in Section 5 is the use of the 
large-deviation results of ref. 5 to verify the analog of Lemma 5.1. Note, 
however, that the only thing we need at this point is an appropriate form 
of the law of large numbers. Thus, since k < 1, any central-limit-type result 
will do equally well. CLT for the block-spin magnetization in a pure phase 
of the Ising model can be found, for example, in ref. 11. 
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